By Prof. Paul Tipton, UK

Prosthodontists are often called upon to reconstruct the occlusion in patients with severe wear. There may be a multitude of issues to address in such cases, including attrition, abrasion, and erosion – all of which contribute to uneven wear and compensatory eruption throughout the arches. There may also be incisal wear and/or interproximal wear and, as a result, the occlusal plane may need leveling and lengthening for enhanced aesthetics and to allow correction and control of the occlusal relationship.

The aesthetic and functional requirements include a decision of the occlusal scheme to be used (part two) followed by determination of the incisal edge positions at rest, the occlusal plane, vertical dimension to work to anterior guidance, lip support etc. All this is achieved by the diagnostic wax-up. This article describes the diagnostic work required for the full mouth reconstruction at an increased vertical dimension.

Treatment planning

All comprehensive treatment planning should begin with an occlusal aesthetic evaluation. Evaluation of the face is essential in determining the ideal aesthetic orientation of the teeth from both a horizontal and vertical perspective. The horizontal reference planes will help the clinician align the occlusal plane and the soft tissue levels along with other related aesthetic determinants. The horizontal reference planes should be evaluated from two perspectives, the frontal and the sagittal. The frontal perspective is assessed by having the patient look out into the horizon and choosing the ideally leveled plane. The most commonly used horizontal reference planes include inter-pupillary line and inter-commissural line (Figure 1). Intra-oral photographs are also key at this stage (Figures 2-4). The following steps are essential to fulfilling the correct diagnosis.

Step 1: Mounted study casts

This is achieved by taking accurate alginate impressions of upper and lower jaws in rim-lock trays, face bow recording and jaw registration around RAP. The technician can now mount the study casts in a semi-adjustable articulator (Figures 5-8).

Step 2: Vertical dimension

The first treatment planning decision is what vertical dimension to work at (part five). This can be established by the use of an occlusal wax-up bite placed into the patient’s mouth. As the patient is manipulated into RAP the lower teeth indent the wax bite. This can be removed, chilled in iced water and replaced as the patient and clinician now assess profile and facial aesthetics. In this way changes in vertical dimension can be transferred early to the technician on the articulated casts and the initial new occlusal plane assessed via an elastic band (Figures 7-8). Once mounted, the degree of over-eruption of either arch can be assessed (Figures 9-10) and casts adjusted (Figures 11-12).

Step 3: Lower incisal edge position

The incisal edge position, incisal plane and occlusal plane are the three most important aesthetic determinants in the development of the treatment plan. These determinants enable the clinician to transfer information throughout the treatment, and are related in specific ways to other aesthetic criteria. The first step in determining the position of the teeth is evaluation of the lower incisal edge position with the lips at rest (Figure 13). Tooth exposure is...
Discover the new
time-saving
composite

4 mm to success

- Bulk filling is possible due to Ivocerin®, the patented light initiator
- Special filler technology ensures low shrinkage stress
- Esthetic results are achieved quickly and efficiently in the posterior region

www.ivoclarvivadent.com
Ivoclar Vivadent AG
Bendenerstr. 2 | 9494 Schaan | Liechtenstein | Tel.: +423 235 35 35 | Fax: +423 235 33 60
The first fluoride toothpaste to harness advanced NovaMin® calcium and phosphate bone regeneration technology to help relieve the pain of your patients’ dentine hypersensitivity.

Repairs exposed dentine: Building a hydroxyapatite-like layer over exposed dentine and within dentine tubules 2–6

Protects patients from the pain of future sensitivity: The robust layer firmly binds to dentine 6,7 and is resistant to daily oral challenges 3,8,9,10

Think beyond pain relief and recommend Sensodyne Repair & Protect

For full information about the product, please refer to the product pack.

For reporting any Adverse Event/Side Effect related to GSK product please contact us on contactus-me@gsk.com.

Date of Preparation: June 2014, CHSAU/CHSENO/0063/14

Arenco Tower, Media City, Dubai, U.A.E.
Tel: +971 4 3769555, Fax: +971 3928549 P.O.Box 23816.

References:
Dentine hypersensitivity protection, now in a daily mouthwash

The first Sensodyne mouthwash containing 3% potassium nitrate and fluoride, proven to provide ongoing protection from dentine hypersensitivity with twice-daily rinsing1-5*

* Rinse twice daily after brushing with a fluoride toothpaste.

considered to be in the crown to gum range dependent on age. To achieve the correct position the edges of the lower anterior teeth need to be shortened or lengthened by either removing stone or adding wax. For example, if crown lengthening is indicated on teeth that were previously ideally proportioned, the incisal edge length can be reduced. Establishing the correct amount of lower tooth exposure dependent upon the age of the patient at rest should be the goal. Once the final lower incisal edge position is determined, the lower occlusal plane is evaluated.

Step 4: Curve of Spee

For this the PMS method is used to establish the anatomically average curves of Spee and Monson, of the radius of a 4” circle. This is done using a Boyle’s plane analyser (Figure 14). For this three reference points are required. One has already been established and that is the position of the lower incisal edge position as per the aesthetic requirements of the patient dependent upon age. The amount of wax added to the lower incisors or amount of stone removed from the lower incisors on the mounted study casts is established by using the lip as the reference plane and calculating where the lower incisal edges are and where they should be. This new level is transferred to the technician so that his starting point for the wax-up is the two lower incisal edges. The two posterior reference points are the retro-molar pads (Figure 15), which have been shown not to change during life/tooth loss etc. There is a certain amount of flexibility when establishing these two reference points as being half-way and two thirds of the way up the retro-molar pads. The lower occlusal plane is established by the Boyle’s plane analyser resting on the waxed-up or adjusted lower incisors and the two posterior reference points on the retro-molar pads. Any over-erupted teeth are ground down and any teeth not touching are waxed-up to the analyser. This creates the ideal lower occlusal plane (Figures 16-18). The lower incisal plane should be levied to the chosen horizontal reference plane (the inter-commissural line, inter-papillary line etc), and evaluated from the frontal perspective while the patient is smiling. The next step is to evaluate the occlusal plane from a sagittal view of the patient’s smile.

Step 5: Upper incisal edge position

Next, the upper incisal edge position should be established. This is done by aesthetics and phonetics, especially the ‘F’ and ‘V’ sounds to establish the labio-lingual position. Aesthetically, the incisal edge position is evaluated in relationship to the upper lip at rest. Age is again used as a guide and it is common that the range of incisal edge show may be between 1mm and 3mm. The horizontal anterior planes, inter-papillary line and inter-commissural lines are again used to establish the correct position. The midline position of the upper incisors can be taken from several anatomical landmarks such as the facial midline, nasal midline, lip midline etc. Studies suggest the closest anatomical landmark is the most important – i.e. the midline of the upper lip. Technicians and clinicians should also realise the extent to which they can change midlines without reverting to root canal therapy – approximately 1.5mm to 2mm depending upon the size of the teeth. However, special tooth preparation techniques (beveling the interproximal margin one side) are required to allow for this change. Even then soft tissue problems may occur as the gingival zeniths will move.

Step 6: Establishing anterior guidance

Any space between the lower incisal edges and the palatal aspects of the upper anterior teeth is now closed by waxing the palatal aspects of the upper palatal aspect down to contact the lower incisal edges to gain an incisal and canine stop in the intercuspal positions (Figure 19). Adequate anterior guidance is a complex function directly related to the form of the teeth, and thus to the vertical and horizontal overlap of the incisors and canines. Anterior guidance is influenced by the proprioception of those teeth, which provides feedback to the masticatory muscles and influences the entire masticatory system. Unlike the posterior determinants, such as the slope of the articular eminence, the vertical and horizontal overlap of the anterior teeth are – to variable degrees – amenable to modification. However, any modifications of the anterior teeth must satisfy not only the aesthetics and phonetics, but also the overall function. If the disclusive angle is too steep, temporomandibular joint or muscular discomfort may result.

Step 7: Maxillary occlusal surfaces

Once the mandibular teeth are ideal in shape and form, wax is added to the maxillary posterior occlusal surfaces to occlude against the mandibular occlusal surfaces in the correct relationship. Correct occlusal shape and form and ridge and groove direction, depth of fossae and height of cusps are now established at the set vertical dimension dependent upon the choice of articulator, facebow and articulator setting device, check bite, cadras, pantograph (Figures 20-22).

Step 8: Refine the occlusion

The occlusal surfaces can be corrected to perfect the occlusal relationship and to idealise the aesthetic
HYPERSENSITIVITY DUE TO TOOTH EROSION CAN BE GONE WITHIN SECONDS* WITH COLGATE® SENSITIVE PRO-RELIEF™ TOOTHPASTE

The risks that carbonated soft drinks, alcoholic mixers and wine pose to your patients’ teeth are well-known – increased consumption of acidic food and drinks can lead to tooth erosion and hypersensitivity.

However, even your patients following a healthy lifestyle may be at risk due to the acidic nature of fruit juices and sports drinks.¹ Hypersensitivity results when the tiny dentine channels directly linking to nerves in the tooth become exposed and is associated with pain and discomfort triggered by heat, cold or touch.

Addressing hypersensitivity is crucial for providing relief to your patients.

COLGATE® SENSITIVE PRO-RELIEF™ TOOTHPASTE TARGETS HYPERSENSITIVITY FOR FAST PAIN RELIEF*²

The Pro-Argin™ Technology of Colgate® Sensitive Pro-Relief™ toothpaste physically seals dentine tubules with a plug that contains arginine, calcium carbonate and phosphate. The plug effectively reduces dentine fluid flow reducing sensitivity and relieving pain in seconds.*²³

COLGATE® SENSITIVE PRO-RELIEF™ IS CLINICALLY PROVEN TO RELIEVE PAIN IN SECONDS*²

In a double-blind, parallel group study, 120 patients directly applied either Colgate® Sensitive Pro-Relief™ toothpaste, a regular desensitising toothpaste¹ or a regular toothpaste¹ to sensitive teeth. Change in hypersensitivity was assessed using air blast sensitivity scores, where a lower score indicates better pain relief.

Not only did Colgate® Sensitive Pro-Relief™ provide instant relief of dentine hypersensitivity, both immediately after direct application and after 3 days of use, but it also provided superior pain relief when compared with the other toothpastes.

Recommend Colgate® Sensitive Pro-Relief™ to your patients suffering from hypersensitivity due to acidic tooth erosion – clinically proven to treat hypersensitivity and relieve pain fast.*²

References:

* When toothpaste is directly applied to each sensitive tooth for 60 seconds.
† Containing 5% potassium nitrate and 1450 ppm fluoride as sodium fluoride.
‡ Containing 1450 ppm fluoride as MFP.

* p < 0.05 compared to baseline • p < 0.05 compared to control

INSTANT AIR BLAST SENSITIVITY RELIEF IN VIVO

Air blast sensitivity score

<table>
<thead>
<tr>
<th>Sensitivity relief</th>
<th>Baseline</th>
<th>Immediately</th>
<th>3 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control with KNO₃ and NaF</td>
<td>Control 2 with MFP</td>
<td>Colgate® Sensitive Pro-Relief™ toothpaste</td>
</tr>
</tbody>
</table>

Ayad et al. 2009b, Mississauga, Canada

* p < 0.05 compared to baseline • p < 0.05 compared to control
Case study
Mr O was referred to me from Birmingham for a full mouth reconstruction (Figures 25-26). On examination there was marked amounts of wear present and loss of vertical dimension (Figures 27-28). Mounted study casts were taken and the vertical dimension – to which the final restorations were to be fabricated – assessed as per the previous discussion (Figures 29-30). The diagnostics and treatment planning protocols discussed in this paper were used to establish the ideal aesthetic and functional end result so that the diagnostic waxing, prep guides and prototypes were produced.

Reconstruction then followed along established guidelines of initially an occlusion splint to establish the correct RAP prior to starting tooth preparation procedures. All teeth were initially prototyped starting with upper and lower anterior teeth but one side followed by another side over a period of three visits during one week.

Once the prototypes had been in place for a period of time to establish the correct occlusion, function and aesthetics and the patient was comfortable, sections of prototypes were removed, definitive preps, impressions, occlusal records and facebow were taken and final restorations fabricated and fitted. Again, upper and lower anterior crowns were fabricated and fitted first to establish and copy (via a custom-made incisal guidance table) the established anterior guidance (Figures 31-33). This was followed by one side then another in the same way. The final result can be seen in Figures 34-36. Finally, a post-restorative splint was made for night-time use.

Step 9: Restoration
The final restorations can be seen in Figures 23 and 24. The step-by-step procedures in the restoration will be discussed during the next case study.

Certificate & Diploma in Restorative Aesthetic Dentistry

DUBAI 2016-2017

Certificate

Year 1 - Certificate

MODULE 1 (18-21 September 2016)
- Treatment Planning in Advanced Restorative Dentistry with Prof. Tipton
- The Principles of Fabrication in Advanced Restorative Dentistry with Prof. Tipton
- Tooth Preparation in Advanced Restorative Dentistry with Prof. Tipton

MODULE 2 (15-18 October 2016)
- Intra-oral views
- Pre Hosford Chair
- Pre Hosford Chair
- Pre Hosford Chair
- Pre Hosford Chair

MODULE 3 (22-25 November 2016)
- Develop Your Potential with Prof. Geoff Sherwood
- Pre Hosford Chair
- Pre Hosford Chair
- Pre Hosford Chair
- Pre Hosford Chair

MODULE 4 (13-16 May 2017)
- Use the Great Courses with Dr. Jonathan Causer
- Master Art of Composite Part 1 with Prof. Tipton
- Master Art of Composite Part 2 with Prof. Tipton
- Master Art of Composite Part 3 and course with Prof. Tipton

Certificate

Year 2 - Diploma

MODULES 5 (May 2017)
- Clinical Coronaries with Prof. Paul Hopkins
- Digital Dentistry and Lab Now with Dr. James Russell & Mr. Stuart Parkinson

MODULE 6 (15-17 September 2017)
- Aesthetic insertion in Restorative Dentistry with Prof. Paul Hopkins
- Composite & Ceramic Preparation by Prof. Paul Hopkins
- Aesthetic Insertion in Restorative Dentistry with Prof. Paul Hopkins
- Masters in Ceramic Techniques by Prof. Paul Hopkins

MODULE 7 (November 2017)
- Waxing, Thermoplastic and Treatment with Prof. Paul Hopkins
- Aesthetic/Functional Crown Prep Techniques with Dr. Adam Sait
- Waxing, Thermoplastic & Treatment with Prof. Paul Hopkins
- Aesthetic Insertion in Restorative Dentistry with Prof. Paul Hopkins

MODULE 8 (February 2018)
- Bridge Preparation Techniques with Prof. Paul Hopkins
- Aesthetic Bridge Preparation Techniques with Dr. Adam Sait
- Thermoplastic/Ceramic Insertion and Embellishment by Prof. Paul Hopkins